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INTRODUCTION 

■ Development of nitramines as solid propellant ingredients has identified 
the sketchy understanding of their comhustion mechanisms.  The chemistry and 
hydrodynamics have yet to be satisfactorily combined to give a description of 
how the combustion process could be controlled or modified.  Present develop- 
ments rely on trial-and-error empiricism in adopting formulations and predict- 
ing their response to variations in pressure, initial temperature, gas velocity, 
and composition.  Improvements are needed in the theoretical description of the 
combustion process.  A model, developed at Princeton University, forms the 
basis for improvements. 

The objective, in general, is to improve the theoretical description of 
nitramine propellant combustion, through development of a comprehensive model. 
More precisely, this is to be accomplished through the following tasks: 

(1) Devise an improved physical model for the vaporization and liquid 
layer of a nitramine monopropellant. Use the improved model to compute 
regression rate dependence on pressure and initial temperature over the 
pressure range T-TO MPa and temperature range 230-330 K. 

(2) Devise an improved submodel  for the liquid layer accounting for 
bubbles.  Use the improved model to calculate combustion solutions to be 
compared with earlier published solutions at 1-k  MPa. 

(3) Perform a critical review of other combustion models of monopropellant 
and of nitramine based composite propellant. 

{h)       Perform a critical analysis of the effect of the three chemical 
reactions used in the existing monopropellant model with a view to a 
scheme to catalyze the reactions. 

(5) Collect and analyze available data on nitramine monopropellant 
combustion with a view to suggesting which data should be considered 
baseline for model validation. 

Items (3) and (5) are performed in Section 2, and items (l) and (2) in 
Section (3) herein.  Task (k)   is still incomplete at the time of this writing; an 
effort is made to conclude this study in the near future. 



I.  CRITIQUE OF THE BECKSTEAD-DERB-PRICE (BDP) 
PROPELLANT COMBUSTION MODEL 

1.1  Background 

Over a decade ago, Beckstead, Derr and C.F. Price introduced 
a model of solid rronopropellant and propellant combustion [l,2l, 
referred to as BDP herein.  The corresponding flame structure 
postulated is depicted in Fig. 1, where the overall physical concept 
is shown.  It consists, for each oxidizer crystal exposed at the 
surface, of three types of gaseous flames.  As will be discussed 
later, each of these flames is assumed to contribute a component of 
heat feedback proportional to exp (-z.) where z. {i = 1, 2, 3) 
denote dimensionless "flame standoff" distances.  The BDP approach 
was used widely in the U.S. ever since, and was applied to a rather 
diverse propellant lot, including ammonium perchlorate composites, 
composite-modified double base, and nitram.ine (HJ-'-X, RDX) propellants. 
Interestingly, a previous compxDsite propellant combustion m.odel, the 
granular diffusion flame (GDF) model of Summerfield 13,4,53 was far 
less accepted in comparison, despite its considerable success in 
simulation of burning rate pressure-dependence for a large class of 
ammonium perchlorate com.posites C6 3.  The GDF model was criticized 
for its intuitive formulation, C7,83 based on dimensional or physical 
scaling arguments, rather than formal derivation; its success in 
burning rate simulation was attributed to the availability of two. 
adjustable constants. .      .;  , -■  • , ' 

An appreciable number of well-developed com.posite propellant 
combustion models has been reported over the past decade, which 
endeavored to incorporate miany real-life effects, such as propellant . 
structure, energetic binder and aluminized configurations.  Such are 
the works of Beckstead [9-13], Cohen lli-llJi,   King tl8,19j, and the 
statistical refinements by ClickC20-233, all of which had evolved 
from the original BDP model of 1970.  In most cases, good comparisons 
with experimental burning rate vs pressure were obtained. 
Surprisingly, the gas phase combustion effects arc still in the 
exp {-z .) form. 

In contrast to the highly approximate treatment of combustion 
processes in all of the BDP-type m.odels, the following aspects assume 
great relative importance:  propellant matrix structure, oxidizer 
particle sizes and distributions, and surface structure (e.g., convex 
or concave burning oxidizer surfaces, appearance of melt layers). 
This is not to say, unfortunately, that these structural eleiTients 
have been rigorously treated.  To the contrary, their representation 
and relevance to the burning process can be inferred only 
speculatively at present.  Indeed, the incorporation of these 
properties gave rise to a large number of adjustable constants in 
the formulation, which can not be derived analytically nor verified 
by physical measurements. 



To obtain some preliminary insight into the development of BDP 
modeling over the years, the following calculation is carried out, 
cum granu salis.  Regarding the surface energy balance (the 
centerpiece of all BDP models), the symbols denoting combustion 
effects (i.e., the exponential terms), and the totality of right-hand 
side symbols (qas phase heat feedback) are enumerated; their ratio 
(the so-called com.bustion fraction) represents a point in Fig. 2 for 
each investigation.  The resultant decaying linear trend obtained 
by least-squares fit demonstrates that the relative importance of 
combustion in solid propellant regression is diminishing in time and 
may even vanish during the 1980s. One may envision the Space Shuttle 
boost phase in 1990 powered entirely by oxidizer granularity, modality 
and volume fraction. 

The foregoing trend should be envied by other combustion system 
models, but deserves closer examination:  Is the exponential 
combustion term, as stated by BDP, consistent with modern combustion 
theory, available since the 1950s? Are the physical and analytical 
BDP models compatible v/ith their own physical picture, as depicted 
in Fig. 3? These are some of the questions which motivate the present 
critique.  More precisely, regarding Fig. 3, the questions posed for 
this analysis are:  (1) Is the monopropellant flare properly 
formulated mathematically? (2) Can the heat feedback contributions 
from the various "adiabatic" flame components be simply superimposed, 
without interaction? (3) Can a planar flame sheet at a mean standoff 
distance represent a conical or parabolic diffusion flame surface? 
(4)  Is this parabolic flame surface truly diffusion controlled? 
The approach is simply to check the validity of the BDP combustion 
model within the framework of its own physical picture or basic 
assumptions.  This is carried out in a constructive manner, with 
parallel derivations offered which are in agreement with present 
knowledge of comibustion theory and implement available therm.ochem.ical 
data. 



1.2  The Monopropellant (Oxidizer) Flame 

The basis for the heat feedback expression in the BDP 
monopropellant analysis C1,2], viz, 

ar/^^(o+) =e:*^   , (1) 

is an approximation of the single (overall) exothermic chemical 
reaction step in the gas phase by a Dirac delta function, at a 
dimensionless standoff distance 

%='y,7(A/'mCp) (2) 

The energy interface condition (at z = 0 ) corresponding to Eq. (1) 
as used bv BDP is 

d-c/d^iO^) = ^= [CCCTS-TC)-QS ^M^ (3) 

where the dimensionless thermal enthalpy is C = C (T-T^)/C*!,  0** is 
the net surface heat release, and Q* is the net gas phase 
exothermicity.  The result of Eq. (I) obviously pertains to the 
solution of the homogeneous energy equation t-"C = 0 for the region 
0 < z < 2 .  This strictly precludes the effect of chemical reaction 
and necessitates extraneous introduction of chemical kinetics effects 
through the intuitive standoff approximation y* = m/X7  , proposed 
earlier by Hermance C24].  Thus, Eq. (2) yields 

^B- W(^)-0(f,T^) (4) 
where m is the mass flux and JTI    denotes the mean reaction rate. 

Alternative derivation (KPR) 

The use of this extraneous condition can be entirely avoided 
when a more rigorous analysis (still within the delta function 
approximation framework) is carried out, as follows.  Consider the 
following simplified chemical reaction scheme: 

SUBSURFACE DECOMPOSITION:  R(c) -*- P(g) + Q (5.a) 
VAPORIZATION @ SURFACE:    R(c) -^R(g) + Q^ (S.b) 
GAS PHASE REACTION        R(g) ->P(g) + Q^ (5.c) 

10 



R and P denote reactant and product mixtures,respectively. 
0 = Q, + Q is the net heat of reaction in the condensed phase, 
c    1    V 

and vaporization in step (5b) can be either simple phase change or 
dissociative.  Note:  G>0 denotes exotherr.icity herein.  The physical 
model for the delta function flame is shown in Fig. 4. 

The dimensionless conservation equations in the gas phase, for 
0 < z < «o are 

where 0 = C (T-T )/0* and Y denote reduced thermal enthalpy and a 
reference (consumable) species mass fraction, respectively.  The flame 
speed eigenvalue is defined: 

A = ^X2(t,Tf)/>n^ (7) 

with SX     being the m.ean reaction rate.  The boundary data are 

'-t'M - av/d^(oo) = 0 . (9.b) 
where 

Using an integrating factor, the solution of the differential system, 
Eqs. (fi)-(9) is readily found 

where 1 (z-z ) is the Heaviside (or unit step) function; a similar 
solution obtains for the species equation.  A single integration of 
Eq. {6.b) between 0 and infinity is facilitated by the delta  function 
im.posed.  This yields, after implem.entation of Eqs. (9.a,b): 

Ai. = ^ (11.b) 

11 



where G is the total incoming flux of reactant 'R,' available at the 
surface. Note that G <1 whenever subsurface decomposition prevails. 
The net surface heat release is, cf Eqs. (5a,b,c): 

QJ = Q^ ^(\-<^^Q*-^ ^^v (12) 

Note that all subsurface heat release assumed to occur at the surface, 
and the total gas phase heat release is 

(13) 

In general, the extent of subsurface decomposition depends on surface 
temperature, residence time and other parameters:  G = G (T , m; T ) 
can be written.  Hence G may be variable; this has not been recognized 
in the POP model, which precludes any consideration of chemical 
species. 

The heat feedback, obtained from a single integral of Eq. (6.a) , 
using an integrating factor: 

ae/a?(o-0=Ae"^' (14) 

is formally similar to that of BDP, cf Eq. (1).  However, the central 
issue of the present derivation as regards burning rate calculation, 
is the flame speed eigenvalue, 

^_aC'P,T^y7n^ = ^ (15) 

combining Eqs. (7) and (11), which naturally incorporates the 
subsurface processes along with the effect cf gas phase chemical 
kinetics. 

The mean reaction rate in Eq. (15) can be put more explicitly, 

-nCf,T^)-(=:.e^   ' ^^^ (16) 

where n and (3, denote the overall reaction apparent order and 
activation energy, respectively, while K^ is proportional to the 
prefactor.  Substitution in Eq. (15) yields 

^ = [^ K.€ ^'^'' f'^/GC-rs.mjTo)] 
1/2 

(17) 

12 



The BDP analysis obtains an analogous expression, using the heat 
feedback expression, Eqs. (1), (3) and (4): 

m(6DP) = [^k.e^"^>--.i.C^)]'^' (18) 

Comparison between the burning rate expressions, Eqs. (17,18)> 
reveals a fundamental difference, demonstrated by the following simple 
test case.  Whenever G(T , m; T ) = const, and T  = const, the region 
0 < z <oo   is equivalent to the same region in a pure gaseous 
deflagration (subject to the sane delta function approximation, of 
course), regardlesF of "surface temperature" variation. 

In this instance, m ^ p "^   is expected, as indeed given by Eq. (17) 
derived herein, but not from the analogous BDP expression, Eq. (18), 
where an explicit T -dependence prevails; this dependence indicates 
inconsistency with the physics of the problem. 

Note that the validity of the foregoing equivalence argument 
(with pure gaseous deflagration) can be readily established 
mathem.atically by noting that G = const implies (letting 
C = C  for this purpose) c    p t       I- I 

e^C%) ^ %(r^^ - A = consC (19) 

as obtained by integration of Eq. (6.a) once, and using Eqs. (8); this 
is compatible with the overall enthalpy balance.  Consequently, a 
m.anifold of genuine solutions can still be generated for distinct 
values of T , as long as the linear combination of Eq. (19) is 
maintained, each solution with a distinct burning rate (or flame 
speed), despite the eigenvalue A-  being fixed. 

It should be pointed out that the delta function flame treatment 
herein is quite crude, and was intended only to simulate the physical 
model used by BDP,  Contrary to popular legend, propagated by an 
erroneous footnote in the KTSS paper ^25!!, this approach was never 
initiated by von Karman;* it was used by Zeldovich in a simplified 
treatment of chain reactions t27].  There exist much more rigorous 
analytical treatments of gaseous deflagrations, using matched 
asymptotic expansions,  by Jain and Kumar E28I1, Push and Fendell [293, 
Joulin and Clavint303 and Ben-Reuven [31]. 

To obtain formal closure, by which the burning rate, m, could 
be calculated, both formulations require a pyrolysis law, or 
m = m (T^); in addition, Eq. (17) requires also explicit knowledge 
of subsurface processes, to obtain explicitly G (T , m; T ).  Once 

s     o 

* in particular, no mention of such approximation was made in 
the classical von I'.arman paper given at the Sixth International 
Combustion Symposium in 1956 [263. 

13 



closure is obtained, the burning rate pressure sensitivity and the 
temperature sensitivity can be derived for both models.  In general, 
these properties are defined, 

where  ^  here denotes the variational operator. 

Froir, Eq. (17) , the first variation leads to 

(21) 

where 

Note that we assume that the product ( A/C )K^ is independent 
of temperature for any reaction order n  under consideration.  Now, 

^K __  r ^A.^  ^T^ ^Ts   1 Sn . ^AiE ^S:T  (23.b) 

The algebraic sum of all  ^m/m-terms, collected: 

_ -dJM^   BTs   34^ _ ?/uK 53^ 915^ _j,2 (23.0 

Thus,   using Eqs.    (20),    (21)   and   (23): 

nCMBR) = '>1l/8- (24.a) 

which still require explicit definition of G (T , m; T ).  In 
comparison, the corresponding BDP-derived sensitivities can be written 

explicitly, 

nCBDP) = y\^ /[2 + q.rsy(?>,Q; ^6^ ^^ ] (25.a) 

14 



^ 2.-^Cf>V/^,Q|Z^€'*^      (25.b) 
where, cf Eqs. (1),(3), 

Note that C  = C  is assumed in the original BDP formulation, whereby 
T is formally independent of T . 
X s   . 

Evidently, the actual values obtained by Eqs. (24.a,b) herein 
depend on the particular subsurface processes, whereby 
G = G (T , m; T ) is defined, which is expected to differ from one 
monopropellant type to another.  In contrast, the sensitivities 
obtained from the BDP form.ulation, Eqs. (25.a,b), depend only on a 
suitable choice of the parameter family, (E , Q*, Q*,...), while the 
underlying functional dependences remain fixed for all monopropellant 
types.  This is a rather strong statement, regarding the universality 
of monopropellant decomposition and combustion mechanisms, totally 
unwarranted by the physical processes involved.  The foregoing 
statement does not detract, however, from the simulative capabilities 
of the function 

-fB<^T,)=TsV26e^^ (26) 

which appears in the denominator of Eqs. (25.a,b). As will be 
demonstrated later, f  has a remarkable correlative power. 

B 

To facilitate comparison with the BDP model, two highly 
simplifed cases are constructed, as follows. 

(1)  For AP simulation, 

6CT6^>VI) =0,3= fenst^ (g) 1^=500»<   (27.a) 

i.e., 70% of AP decomposition is assumed to occur with the subsurface 
region, in line with similar considerations by BDP, and, in a much 
rr.ore detailed AP deflagration model, by Guirao and V.'illiams ^323. 
In addition, C > C  is assumed herein, leading to an explicit 
dependence of the aSiabatic flame temperature, T , on T through 
the overall enthalpy balance: 

whereby. 

(27.b) 

(27.c) 

Note that although (C  - C )T /(^*   is expected to be small, still 
c   psl 

(C  - C )/C /w 0(1) according to available data, 
c   P  P 

15 



It should be pointed out that ^G = 0 at ST = 0, while ST^, 
Jm, ^p ^  0, may still follow from the general case outlined in 
Eq. (23.a): 

This implies that residence time and characteristic chemical kinetics 
relaxation time in the subsurface region balance exactly to yielc? 
zero variation of G under these conditions.  However, for S^T^ f  0, 
while ^p = 0 and ^T , S^m / 0, one may have 

from Eq. (23.a). The corresponding correction to the temperature 
sensitivity in this particular case is derived in the second part 
of Appendix A. 

(2)  For nitramine simulation (HMX in particular), the extent of 
subsurface decomposition expected is much smaller in comparison, but 
variable.  The following approximation is based on the assumption 
that the activation energy, F , is high, and hence most of the first- 
order overall reaction in the liquid phase occurs in a thin region 
near the surface. For the derivation given in Appendix A, the result 
is 

6C-Ti,vnjTc)=eKp[-l<c-e'^& ^^o]    <^'-^^ 

The appropriate partial derivatives are 

(28.c) 

-5- to 

Further, in this case, C === C  is considered in good agreement with 
measured C and calculated C ^(gas phase near-field) data, 

c p 

In both cases (1) and (2), the following pyrolysis law is 
imposed, to obtain closure: 

16 



One may proceed now to compare the present- derivation and the BDP 
model, for AP and HMX; the appropriate input data are given in Tables 
1 and 2. Experimental burning rate data for HMX and AP are taken 
from Price, Boggs and DerrtSSl, and for AP also from Hightower 1343. 

TABLE 1 

AP INPUT DATA 

PRESENT BDP MODEL, 
PROPERTY UNITS# MODEL PRESENT CALCULATION 

^C cal/cm-s-K 9x10"^ (c) - 

S cal/g-K 0.5 (b) 0.3 

"c g/cc 1.94 (a) -  ■ 

^ , ... V- 
1/8 2.39x10^^ (c) - 

=c kcal/mol 58.22 (c) - 

"c 
- 0 (c) - 

\ kg/in -s 1.29x10^ (d) - 3x10^ 

'   ^s kcal/mol 24.24 (d) 22 

v% kg/m-s 5x10"^ (e) 10-3 

% 
cal/g-K 0.3 (c) 0.3=C^ 

^l«u^ cal/g +444.6 (d) Q*=+210 

Qsub cal/g -591.5 (c) Q*=+120 

K, 2   2   "l 
{kg/m''-s)''/Pa ^ K^=l. 387x10"* (. g) K°=9.619xl0"-'-^ (g) 

"l 
- 1.8 (f) 1.8 

,,  E^   ■ kcal/mol 42 (f) • 30. 

■^f K 1982-0.67Tg (d) 1400 

Tg-RANGE* K 835-910 (c) 845-935 

# All actual calculations were performed using the SI system. 

NOTES:  (a) AMCP 706-177 Eng. Design Handbook [35] 
(b) Price, Boggs and Derr [33] 
(c) Guirao and Williams [32], calculated values 
(d) See comments following Table 2 
(e) Taken approximately from calculated values for RDX [31J 
(f) Longwell and Wise [36] 
(g) See Appendix B for calculations 
(*) 2 MPa-10 MPa 

17 



The following comments pertain to particular values of parameters 
used in the present model for AP as shown in Table 1. 

The values of A , E in the pyrolysis formula were calculated 
_ s  s 
from 

using the following two data points {r, T ): 

p(MPa)    r(cm/s)*   Ts(K)** 

2        0.3      835 
10        1.0      910 

*  Price,  Boggs  and Derr [^33],  r  vs p   (measured) 
** Guirao and Williams  [32j,    T    vs p   (calculated) s 

6    2 
Thus.E «= 24.24 kcal/mol, and A = 1.29 x 10 g/cm -s are obtained, 
using a sample density of 1.94 g/cc. 

The value of Q* « 444.6 cal/g was calculated from the global 
enthalpy balance, 

with C = 0.5, C » 0.3, T = 300K, and T = 873K (at p « 4.5 MPa, 
reference point)? Using this value of Q*, one may obtain the linear 
dependence for T,(T ) shown in Table 1.  It should be noted that the 
"surface heat release" according to Eq. (12) is thus 

using C* . = -591.5 cal/g (from Guirao and VJilliams C32]) and 
G = 0.3f" This value of Q* is quite close to that inferred by BDP, 
namely,120 cal/g. 
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TABLE 2 

HMX INPUT rSVEA 

PKDPEBT/ UNITS* 
PRESQ5T 
MODEL 

BDP MXEL 
PRESENT CAmjLATION 

^C 
cal/ar-s-K 7x10"^   (a) - 

% cal/g-K 0.43  (a) 0.3 

"c g/cc  (pressed pellets) 1.88 ;              .          - 

\ 
1/s lO^^-^  (b) - 

% kcal/nol 52.7   (b) - 

»c - 1  (b) - 

N kg/in^-s 2.09xlo''  (c) 5x10^° 

=s kcal/inol 19.59   (c) 50. 

^g/Cp kg/m-s 5x10'^  (c) 10-3 

V cal/g-K 0.43=C^  (c) 0.3=C c 

Q^ub cal/g -141.6  (f) Q*=+225 

• 
cal/g +453 (e) Q*=+667.5 

^f K 1353 (e)(g) 3275 

T -KANGE* 
s 

K 650-767 1085-1235 

=1 kcal/nol 46.2  (d) ^h 
-? 2      2      "l (kg/m''-s) -^/Pa "^ 1.017x10''^     (h) 4.34xl0--'-^  (h) 

"l -■ 1.4   (h) 2 

# Actual calculations were performed using the SI system. 

AMCP 706-177 Eng. Design Handbook [35] 
Robertson 137] 
Ben-Reuven and Caveny [38J 
Shaw and Walker [39] 
Ben-Reuven [31] 
Rosen and Dickinson [40J 
This is only the nearfield-end temperature, not the 
final flame temperature (3100 K at 20 atm). 
See calculations in Appendix B 
1 MPa-25.4 MPa 

NOTES: (a) 
(b) 
(c) 
(d) 
(e) 
(f) 
(g) 

(h) 
(*) 
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1.3 Discussion of Monopropellant Siinulation Results 

The formulation developed herein was used along with the BDP 
model to obtain parallel simulation of burning rate and pressure 
sensitivity data for both AP and HMX. 

The results of burning rate vs pressure are shown in Fig. 5. 
The experimental data were taken from several sources [^ 33,341 moGt 
of which were unavailable at the time the BDP model was developed. 
For this reason, both models were adjusted (single paraneter fitter", 
pertaining to the chemical kinetics constant) at a single experimental 
reference print  (p, m.) , as explained in Appendix E.  'j'he plotr in 
Fig. 5 demonstrate that both models simulate well the AP burning rate, 
while the present model is clearly better for HKX in the pressure 
range below 10 MPa (100 atm). 

The sam.e HMX data set was previously used to obtain the 
parameters (c, B) in the following burning rate correlation, 

r = cpC^-^-B/p)""^ (30) 

derived in Ref. 36, and reproduced in Fig. 6.  Evidently, simulation 
by Ec. (30) is superior to both BDP and the present model.  This is 
not surprising, since Eq. (30) incorporates physical details pertinent 
to the complex nature of nitram.ine deflagration (namely, the concept 
of near-field and far-field, each dominated by a distinct chemical 
reaction mechanism) .  These details are com.pletely m.issing from the 
EDP model, and were omitted from the present model (which is based 
entirely on the near-field) to facilitate the single delta- 
function flame approximation. 

The pressure sensitivities due to each model are comparer in 
Fig. 7, where the trends typical of AP (n decreasing with increasing 
p) and HMX (n increasing with increasing p) are demonstrated.  Also 
shown is the remarkable capability cf the EDP m.odel to obtain both 
increasing and decreasing n (p) with the saire functional relationship, 
as mentioned earlier.  The magic of this achievem.ent is entirely due 
to the function f_(T ), given in Eq. (26). 

B  S 

According to Eqs. (1) and (3), the BDP model provides q = -lg(z ). 
From Eq. (3), 

T; ^CT^-hbO/bo (31) 
where t> = C /C* and b = (C T + 0*)/i*       Thus, Eq. (26) yields 
an expression in terms of q. 
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2 
wl^ere the multiplicative constant 1/b has been omitted, without 
loss of generality.  Note that b is positive for net surface 
exothermicity, as assumed by BDP.  In general, 0 <q < 1; at both 
ends of this domain, f —»■ + oo , and the single extremal point, q*, 
is defined by     , 

i^n> <^l'-^ ^'VC<-1'.) = 0 (32.b) 

A. 
where f (q*) is a minimuir..  Now, from the denominator of Eq. (25.a) 
one can readily see that whenever f  increases, n will decrease, 
and vice versa for decreasing f .  Thus, the question of n(p) 
progressivity or regressivity in the BDP framework amounts to proper 
choice of parameters.  The actual parametric ranges employed by BDP 
are as follows. 

For AP, the range is 

T^(K) p(MPa) q t ^B 

830 
970 

1.58 
18.4 

0.186 
0.38*; 

4.50 
5.23 

1.68 
0.95 

for bp = 1.43 X 10~  1/K and b  = 1.0; q*(b ) = 0.2137 and T*{q*)= 
849K, while p* = 2.34 NPa.  At this point n(p*) is maximal; thus, 
n will increase for p < p* and decrease for p > p*, as shown in Fig, 
7.  This behavior is entirely extraneous to the physics built into 
the EDP model, and is not collaborated by experimental observation. 

For HKX, the range is 

T^(K)    p(KPa)      q        fg      Zg 

1070     0.7     9 X lo"^   5.46    4.71 

1235     21.6     8.3 x 10~^   1.4?     2.49 

for bp = 4.49 x 10~  1/K and b  = 0.472; q*(b ) = 0.1478, an order 
of magnitude higher than the HFX q-range.  Thus, T*(q*) = 1379 K, 
and n(p) will be progressive throughout the range of p considered, 
as shown in Fig. 7. 
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Obviously, f variation for AP is moderate in comparison with 
that of HMX, since for AP the q-region straddles the f -min point. 
For HMX, the q-region is assigned (by proper choice of the T range 
and other parameters) away from the f -min point, so that f variation 
is more pronounced. Consequently, one may expect the BDP model to 
obtain steeper n(p) and d (p) variation for HKX than for Ap in the 
same pressure range.  This is demonstrated in Figs. 7-11. 

Regarding temperature sensitivity, both the BDP model and the 
present model seeir. to perform rather poorly when compared to the 
experimental data of Price, Boggs and DerrC33l.  The associated data 
reduction for AP and HKX is shown in Figs. 8 and 9,respectively. 
Calculated and experimental values of (4 vs p are depicted in Figs. 10 
and 11.  For AP, Figs. 8 and 10 demonstrate nonmonotonous behavior 
(with a minimum between 5 and 6 MPa), but relatively small overall 
variation:  100 rf  between 0.2 and 0.3 1/K, for 1 < p < 10 MPa.  In 
the same pressure range, d    for HMX is monotonously decreasing, with 
a relatively large overall variation: 100 d    varies between +0.4 and 
-0.04 1/K, as shown in Figs. 9 and 11; crostemg to negative values 
occurs roughly at 7 MPa.  Note that the BDP results for HMX, although 
following the general trends at low pressures in Fig. 11, are still 
an order of magnitude too high. 

The folloving conclusions can be drawn.  Both the BDP m.ociel and 
the present model perform reasonably well in simulation of burning 
rate data, with a single parameter adjustment.  Both models obtain 
explicit solutions, although the present model is somewhat more 
involved algebraically, on account of the input reactant fraction, 
G(T , m; T ), which is completely absent from the BDP formulation. 
Botn models perform rather poorly in simulation of pressure- and 
temperature-sensitivity of burning rate. 

The major difference between the models is quite apparent.  The 
present model can be derived rationally from basic principles of 
combustion theory (using both energy and species conservation 
equations) and involves functional details  (such as subsurface 
decomposition process and chem.ical kinetics data) specific to the 
monopropellant under consideration.  In contrast, the BDP miodel 
incorporates an intuitive argument (extraneous introduction of 
chemical kinetics effects), while excluding specific physical 
details; consequently, the BDP formulation is not in agreement with 
known combustion theory, and characteristics of each monopropellant 
must be entered by proper choice of parameters and T -range.  This 
parameter selection is often tenuous, as evident from the high values 
of T imposed for HMX (which seem more adequate for the outer end 
of the gaseous nearfield, where prim^ary decomposition is complete) , 
or from the n(AP)-max obtained inadvertently. 

The delta-function approach developed herein is admittedly 
oversimplified (for W1X in particular), and seems too crude for 
anything but burning rate vs pressure simulation.  It shows, 
nevertheless, that a reliable alternative to the BDP monopropellant 
model can be derived, and has potential for improvement,e.g.,better 
subsurface decomposition form.ulation. 
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1 4  The BDP Composite Propellant Model 

This section addresses the problems associated with the BDP 
combustion model, specifically pertaining to composite propellants, 
as shown in the three parts of Fig. 3. 

The BDP model employs two consecutive flames in its physical 
picture, cf Fig. 3.a, namely, the "monopropellant flame" and the 
"final diffusion flame." Both are assumed adiabatic, and their 
respective heat feedbacks to the surface are simply added; in other 
words, the two flames are assumed independent of each other, or 
decoupled.  Obviously, conductive heat transfer from the external 
(diffusion) flame must pass through the premixed monopropellant flame 
region.  An approximate double delta-function flame analysis (in which 
the external flame position is assum.ed to be far downstream from the 
inner flame) indicates that appreciable nonlinear coupling between 
the external and inner flames should prevail.  The following results 
dem.onstrate this point. 

Suppose that the external flame has an exothermicity Q*, 
com.parable to that of the inner flame, and is placed at a 
dimensionless distance of z from the surface, such that z »z . 
Thus, one may consider the external flame as a small perturbation 
in the region close to the surface.  The thermal enthalpy at the 
position of the inner flame is 

where the last term in parantheses represents the dimensionless heat 
feedback to the surface, and 

s: 

Now, relative to the unperturbed, single delta-function inner flame, 
the perturbation is 

fe,=e,-e°=c,e^Ye"'_i) (35) 

where ( )  denotes unperturbed properties; note that z = z  has been 
assumed  (as inferred from detailed calculations, cf Fig. 6 of Ref. 
38), as well as A = A .  This leads to a perturbation of the inner 

flame temperature, T (z ) 

'^r,/T,'^iQ*/q,T,-)he, 
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and consequently, through the eigenvalue relationship in Eqs. (15), 
(16), the associated burning rate perturbation is 

\vrt/^'' r^y (^^Ja,-X^)lT,/T,' pe) 

with (p /2T ) <v 0(10), demonstratinq appreciable amplification. 
This nonlinear coupling effect is coir.pletely absent from the BDP 
composite propellant analysis, since adiabatic values of T^ = T^^ 
are specified, and the surface enthalpy balance (where all heat 
feedback components are linearly superimposed)  is used to calculate 
the overall burning rate.  It is therefore indicated that the EDP 
model is deficient in this respect of external/inner flame coupling, 
even if the physical model of Fig. 3.b is accepted. 

Another puzzling aspect of the BDP composite model is that the 
parabolic (or conical) diffusion flame in the physical picture, cf 
Fig. 3, is transformed into a planar sheet parallel to the propellant 
surface in the physical model. Fig. 3.b.  Then, in the analytical 
model, BDP assigns a value of exp(-c-z ) to the heat feedback due 
to this flame, where z  is the dimensionless flame height, 
proportional to the actual height, X*  , and c denotes a 
proportionality constant. 

In an attempt to see whether such mean flame height is 
analytically plausible, an approximate calculation of the mean heat 
feedback is carried out, for a conical flame with a height of z^. 
The configuration is shown in Fig. 12.  The prevailing assumption 
is  that the heat feedback contribution, due to each circular element 
of the conical flame surface, is proportional to exp(-z), where z 
denotes the element height.  The contributions from the entire cone 
surface are then integrated, and the corresponding mean heat feedback 

to the oxidizer crystal surface is 

(37) 

where R  is the crystal radius.  The expression obtained herein for 
the mean heat feedback, "qj^ (z^) , clearly precludes simple reduction 
to the form used by BDP, where z appears only as the exponential 
argument. 
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The f-inal point to be raised in this conjunction concerns the 
validity of the so-called final diffusion flame.  EDP postulated that 
this flame is diffusion controlled under all conditions, and without 
reference to particular chemical kinetics length or time scales. 
This means that chemical kinetics relaxation times are typically 
much shorter than diffusion times.  Clearly, the reactant streams 
(emanating separately from binder pyrolysis and from oxidizer primary 
decomposition) are non-premixed or initially separate; further, the 
expected temperature range should be quite high, close to the 
adiabatic flame temperature of  the oxidizer/binder configuration. 
All this seems to favor fast reaction kinetics and diffusion- 
controlled sheet flame.  However, calculations carried out with 
chemical reaction length scales relevant to nitramine com.bustion 
demonstrate that some typical secondary reactions have length scales 
in the order of 100 microns and more.  This is shown in Fig. 13; these 
scales are similar to typical hydrocarbon-oxidation reactions 
expected between binder chain fragm.ents and oxidizer primary 
decomposition products for both AP and HMX. Moreover, oxidation 
reactions involving NO, a typical HMX decomposition product,are 
expected to be even slower.  This strongly indicates that in some 
cases, specific to both propellant configuration and pressure regime, 
the final flame might he chemical-kinetics controlled, or that 
kinetics and diffusive processes might have comparable length and 
time scales. 
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1.5  Conclusions and Recommendations 

The foregoing results point to several deficiencies in the BDP 
combustion model for composite propellants. These are: (1) The 
monopropellant (premixed) flame model does not agree with known 
combustion theory. (2) The analytical composite model combines 
linearly heat feedback from three different flame components without 
any consideration of thermal coupling, a prevalent nonlinear effect. 
(3) Heat feedback from the parabolical or conical flame surface is 
not adequately represented.  (4)  The final flame Is assumed 
diffusion-controlled under all conditions, regardless of relevant 
chemical kinetics or pressure regime.  Some of these defects could 
have been readily corrected.  It can  only be lamented that such a 
large amount of mental energy went, over a period of ten years, into 
considerations of granularity, modality, concave/convex particle 
surfaces, distinct vs uniform binder/oxidizer surface temperatures, 
etc., — all in support of a semi-empirical correlation (exponential, 
not polynomial) which does not live up to its own physical model. 

Evidently, this analysis indicates two main routes for future 
solid propellent combustion research. One, with an immediate 
engineering utility, would be to use directly Chebichev polynomials 
of the first kind to simulate burning rate vs pressure, with 
adjustable coefficients to account for granularity, modality, etc. 
These must work, since they involve exp{-z): 

■i-eO 

H„(w) 

Chebichev polynomials, order n=l through 
5 plotted against normalized independent 
variable, w. 
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where J denote the associated Bessel functions of the first kind, 
arid w is a normalized independent variable.  These polynomials are 
routinely available in any respectable minicomputer software package, 
whereby a large number of coefficients can be adjusted with minimal 
effort. 

The second way, by which physical insights might be obtained, 
would be through detailed analysis, using explicit chemical mechanisms 
and kinetics data in a comprehensive model, which m.ay probably require 
numerical solutions of differential systems. 
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Fig. 1  The physical concept of burning composite 
propellant, due to BDP. 
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Fig. 2  The Combustion Fraction, an indicator of the relative importance 
of combustion processes to various propellant burning models.  The 
trend, obtained by least squares fit (excluding the model by King [l8]) 
is obviously negative. 
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I A. BDP PHYSICAL 
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Fig. 3   Evolution of the BDP analytical model from the physical model 
and the physical picture imposed by the authors.  One major question 
in the critique herein is whether the three models are self-consistent. 
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Fig. 4  The delta function approximation for the gas phase, used to 
develop the present simplified model.  The delta function is imposed only 
in the dimensionless physical coordinate system, (Q,B). 
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Fig. 5  Comparison of burning rate vs pressure for HMX and AP by both 
BDP and the present model (denoted MBR), showing the latter to obtain 
better correlation for HMX below 10 MPa. 
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II,.  A COMPREHENSIVE ANALYTICAL 
MODEL FOR NITRAMINE DEFLAGRATION 

1.1  Background 

The foregoing section indicates that the complexity of nitramine 
monopropellant deflagration has not been considered in many composite 
propellant modeling efforts.  Evidence to this complexity can be found 
in abundance in the nitramine chemical decomposition literature, a 
sample of which is given in Refs. 1-22; these works have been thoroughly 
reviewed in Ref. 23 and from the basis of a detailed analytical model 
[2i+, 25]; the present work is a direct extension of this model.  Further 
reviews of published chemical analyses were performed by Schroeder [26-28]. 

The main objective of the present analysis is to enable burning rate 
prediction, i.e., calculation of m (piTg) over a wide pressure range. 
Since the near-field in the gas phase has been treated in some detail 
previously [23-25], in terms of two global reactions, a natural extension 
would be to incorporate the entire gaseous flame (including the far-field) 
and to improve the melt phase model.  This entails a larger number of 
secondary reactions and chemical species than previously considered.  Fur- 
ther, in order to calculate the burning rate independently, full closure 
of the gas/melt interface conditions is required; this is provided by 
incorporation of a nonequilibruim evaporation law.  This part of the study 
is motivated by the desire for better understanding of the nitramine 
combustion mechanism, and ways to affect changes in the burning rate, 
ultimately.  The capability to compute the flame field structure (species 
and temperature profiles) as well as temperature and pressure sensitivities 
of the burning rate would enable comparison with experimental data for 
verification. 

This leads, of course, to greater computational complexity and points 
up the relative lack of reliable chemical kinetics data.  In this respect, 
the analytical model developed herein could serve to test various relevant 
chemical mechanisms and kinetics data, despite the higher degree of un- 
certainty involved. 

The following sections describe the elements in the analysis which 
are new relative to Refs. 23-25:  An extended (highly idealized) chemical 
mechansim for the gas phase, the melt phase model including decomposition 
gas bubbles, the gas phase model extended to include the far-field, and 
the nonequilibrium evaporation law. 
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1,2  CHEMICAL MECHANISM AND KINETICS 

Nitreunine deflagration probably involves two major sets of 
chemical reactions: (1) primary decomposition, first order overall, 
(in both condensed and gas phases) in which the molecular substance 
breaks up to form intermediate reactants, which is relatively fast 
and would occur close to the propellant surface, and (2) secondary 
reactions between the intermediate species, typically second order 
overall, relatively slow (compared with primary decomposition), by 
which the final composition and the final temperature evolve.  This 
conceptual division into two rather diverse families of reactions 
is based on reported observations of the mechanism, products and 
kinetics of nitraraine decomposition[l-223 ;it tends to be strongly 
supported by the measured shape of burning rate vs pressure curve, 
which exhibits a progressive pressure exponent n(p). For detailed 
discussions of the mechanism and kinetics of nitramine decomposition, 
the reader is referred to Refs. 23^24 and 25 . 

The chemical reactions considered in the present analysis are 
as follows: 

RDX(L) -»• 3CH 0+9/4N 0+3/4NO+3/8N , Q=51.4 kcal (R.l) 

RDX(G)-♦ NO +N 0+3CH 0+3/2N ,     Q«=106.8 kcal (R.2) 

5/7CH2CH-N02-*NO+3/7CO+2/7C02+5/7H20, Q=46 kcal (R.3) 

CH 0+N 0-^H 0+CO+N , Q = 76.1 kcal (R.4) 
£t ^ iC *» 

CH 0+NO-*H 0+C0+1/2N , Q « 78.1 kcal (R.5) 

CO + H-O-^CO  + H , Q = 9.9 kcal (R.6) 

CO  + H -♦CO  + H-0, Q = -9.9 kcal (R.7) 

where Q>0 denotes exothermicity. All the reactions (R.2) through 
(R.7) can occur simultaneously at any point in the gaseous flame 
field.  The global mechanisms postulated for reactions (R.4) and (R.5) 
are purely conjectural, and merely intended to produce observed final 
products. The relevant chemical kinetics data is given in Table 1. 
It should be emphasized that the list of chemical reactions herein 
is in no way conclusive. Many more reactions may be relevant to the 
gas phase during nitramine deflagration; further, some intermediate 
products might have a strong influence upon the far-field structure, 
the final composition, and final temperature attained.  The algorithm 
constructed in this study for solution of the conservation equations 
in the gas phase anticipates progress in the detailed knowledge of 
relevant mechanisms and chemical kinetics data.  Incorporation of 
additional chemical reactions in the model involves merely 
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modifications of the input data set, as the reaction terms are handled 
in a completely generalized manner in the algorithm. For 
accomplishment of this flexibility, the list of chemical species (and 
the specific therraophysical data associated with them, such as 
specific heats, conductivities and viscosities, molecular weights, 
etc), is more extensive than would be required by the foregoing list 
of reactions, and is as follows: 

\      ■ ■■ 

nitramine (RDX or HMX), HO, CH 0, CO , CO, N , 

NO, N^O, NO^, HCN, HNO^, H^, H, HO, and (-CH^-) 

Evidently, reactions by which HCN + HONO, or HONO 4-center 
elimination occur were excluded from the present analysis. 
HONO-elimination was suggested by Shaw juid Walkerf20jas a possible 
initial step of nitramine decomposition, later followed by Schroeder, 
t26-~28]Iand recently by McGuire and Traver[29^;all these works involve 
theories, not measurements. Experimentally, the Electron Spin 
Resonance (ESR) spectroscopy conducted by Beyer and Morgan [3o3 
indicated the presence of HCHN and NO during decomposition of RDX 
and HMX; these may lead to subsequent HCN + NO. reaction; however, 
HONO-elimination is not a necessary step and HCHO production is still 
present.  It must be stressed that identification of large molecular 
fragments of 74 and 148 amu by Goshgarian [l6] and by Farber and 
Srivastava,[313 by mass spectroscopy of decomposing RDX and HMX do 
not lend any evidence to the HONO-elimination schemes; rather, further 
support is obtained for the widely observed HCHO, N0_ and NO 
decomposition products. For these reasons, the reactants HCN and 
HONO are incorporated in the data set of the present analysis, but 
the corresponding reactions were suspended until further experimental 
evidence points out their relevance. As to HCN oxidation by NO , 
the high-temperature and pressure (but dilute mixture) measurements 
by Fifer and Holmes [323 indicate that this overall reaction is slower 
by 1 to 3 orders of magnitude than the parallel NO + HCHO reaction 
in the range 1000-1500k typical to the end of the gaseous near field 
in the deflagration process, which means that the HCN + NO oxidation 
does not influence the heat feedback to the propellant surrace 
appreciably. 

1.3  ANALYSIS 

Generally, the physical model of nitramine monopropellant deflagration 
herein is quite similar to the models discussed in detail by Ben-Reuven et al; 

[Zi-ZSJ therefore, only those elements of the present analysis which are distinct 
will be presented.  In particular, (1) incorporation of gas bubbles in the melt 
layer, (2) extension of the analysis to include the far-field in the gas phase, 
and (3) addition of a nonequilibrium nitramine evaporation law, to facilitate 
independent calculation of the mass burning rate, m. 

The physical models for the gaseous deflagration wave and the melt layer 
are depicted in Figs. 1 and 2,respectively. The analytical method employed 
is to define and solve separately well-posed problems in each region (melt, 
and gas phase), and then match the solutions at the melt/gas interface by 
satisfying the available mass, species and energy conservation constraints. 
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1.4 CHEMICALLY REACTING MELT LAYER WITH GAS BUBBLES 

The presence of gas bubbles in the melt layer of deflagrating 
neat nitraniines (RDX and HMX) has been inferred from electron 
microscope photography of extinguished sample surfaces [5^]] .Their 
relevance to the actual deflagration process was further indicated 
in a previous theoretical analysisCzslwhere the effect of bubbles was 
identified a posteriori by an approximation (which allowed a unique 
correlation between the imposed global heat of reaction in the layer 
and pressure). The melt layer analysis herein incorporates gas 
bubbles a priori, through a two-phase flow treatment. 

It should be emphasized that even with 1% subsurface 
decomposition in which bubbles are formed, the local mean density 
would be appreciably lower than the neat liquid density; of course, 
this follows from the great diversity in intrinsic densities at 
moderate pressures: O* ^C?*. Similarly, since thermal conductivities 
are related approxima?ely as p,  /^G'^ 0(10), the porosity, due to 
the presence of bubbles, can effectively decrease the conductive heat 
transfer in the layer. In comparison, the available data show that 
C = C  (gas) in the range of temperatures considered. 

The following simplifying assumptions have been employed: 
(1) Bubbles are small relative to the overall layer thickness. 
(2) Bubbles are small enough such that thermal relaxation within the 
bubbles and between the bubbles and the liquid can be considered 
instantaneous, and a uniform local temperature, T = T prevails at 
each point.  (3) Mean intrinsic thermophysical properties 
(conductivities and specific heats) are uniform throughout the layer, 
as well as the liquid density, 9 *.  (4)  Further, the pressure 
throughout the layer is uniform: dp/dy = 0, and equal to the external 
pressure prevailing in the gas phase domain.  (5) Although thermal 
diffusion is incorporated, chemical species diffusion (due to 
concentration gradients) is assumed negligible in the layer; note, 
however, that the gas may percolate through the liquid, as a nonzero 
velocity-slip is permissible. 

For two interpenetrating media,  the total volume is V = V + 
V .  The porosity or "void-fraction" is then'\p"= V /V, while the 
overall mixture density is defined 

where f* = const, and p* = p W A T are the intrinsic liquid and 
gas densities, and Y denotes thi overall liquid mass fraction. 
According to the foregoing definition of porosity, 

^ = (i-v)<§g/9, * (2) 
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Similarly, ' 

both of which will become useful later. The mass conservation 
equations arise from a continuum derivation for two phase flow, such 
as given by Nigmatulin [Ml;at steady state, 

^[(i--4-)?,x]=^[v?6acJ=-a;c   ,3., 
3 

OJ (kg/m -s) denotes the mass exchange rate between the phases, due 
to liquid nitramine decomposition by which a gas mixture evolves. 

00c = A^e'*'''^'^^''Yf6V)     (4) 
Summation over the two mass conservation equations yields the overall 
constraint:  dm/dy = d/dy{m + m ) =0, from which 

determined at the solid/liquid boundary, where Y(- y ) =1, and 
u  (- y ) = r.  The formal similarity between the foregoing 
differential equations for liquid and gas can be utilized, so that 
only one need be solved (e.g., the liquid phase), as will be shown 
later. 

The liquid phase momentum equation in the layer is 

(6) ^ [b-'V)^*Ui]+ 0 -■^)^ = - UcOD. 
which reduces to du /dy = 0, or 

^cC^) =^ r = coTvst (?) 
where assumption (4) and Eq.(3.b) have been applied. No useful 
information is obtained from the gas phase momentum equation, since 
with u = r and  * fully determined by T(y), one may obtain 
algebraically from Eq. (5), • 

l^0j)=m/9^(TCa^^) t8) 
which is similar to the definition of velocity in the gaseous flame 
field, where m = const and p = const are likewise assumed. 
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utilizing assumptions (2) and (3), the combined energy equation 
(Over both gas and liquid phases) is written in terms of the overall 
thermal enthalpy, h == C  (T - T ): 

C    B       0 

(9) 

where C„ = C = C = const, and 
B   c    p 

Xg,^\lrX^+(['\\r)^c (10) 

the overall conductivity is now obviously variable through the layer, 
through its dependence upon the porosity.  It should be emphasized 
that the layer thickness is not known beforehand; however, three 
boundary conditions are available for the energy equation, viz., 

^^C-^i^= '^[^(X.'To)^0^  1     (11) 
which help overcome this difficulty.  The following coordinate 
transform is used: 

did' -J (12) 

This transform, and the dimensionless variables "CTs (T-T )/{T -T ), 
and X =  ?Q^/§* reduce the differential system for 0 < z < z  to; 

^ =  - ^C (14) 

-cm^-o^   cir/a2(o)-[©,J-t-C:Cr...'Tc)3/ccCrrTo)^ 

X(0) == i , (15) 

where § = Q*/C (T -T ), cO S ( PL/C m^)u) and z defined by Eq. (12), 
with upper limit of 0. A final transform to 'C,  as independent 
variable, with ^ — 'C-  dZT/dz and z as dependent variables,obtains, 
for 0 <-C< 1: 

d45/dl-r = Sc oJc/Cr- ct) (le) 
d^/dr = A/{T:'<^^ d?) 

4>C0) =r - d-tr/a^o) ^      z(o) = 0  . (18) 
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while X(t;) is given at each point by the coupling coefficient 

where the self-similarity between ^  and X in Eqs. (13) and (14) has 
been exploited. Of course, an additional integration is necessary 
to determine y from the dimensionless z. 

The formulation in this section therefore obtains a closure, 
by which all of the layer properties of interest (including Y, dT/dy, 
§ ,  u and T|^) can be caluclated as functions of temperature, with 

(m, T^; p,  T ) as parameters. The major physical difference between 
the present melt layer model (with bubbles) and the previous ones 
[2i ,253 ,(without bubbles) is that pressure effects are incorporated 
explicitly herein, whereas in the previous models solutions could 
be generated for specified (m, T ; T„) data. 

s  u 

The differential system of Eqs. (16) through (18) was integrated 
numerically, using a Runge-Kutta-4 method. 
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1.5  THE GAS PHASE REGION, INCLUDING THE FAR-FIELD 

In the case of nitramine deflagration at moderate pressures, 
the diversity of chemical kinetics length scales  (between rapid 
primary decomposition and much slower secondary reactions) implies 
that the gas phase region is divided into two distinct parts: the 
near-field, adjacent to the surface, where rapid change and high 
gradients occur, and the far-field, where changes in composition and 
temperature are much more moderate in comparison. 

Employing standard assumptions (for a discussion, see Refs. 'iS 
and 23), the dimensionless conservation equations for chemical species 
mass fractions and thermal enthalpy are, in the region 0 <.^<00: 

/ ^ r^ 

-<.=■ I 

3 
where CAD. (mol/m -s) denote overall reaction rates, and the 
diffusivities are '^/C = ^D, equal for all species, but allowed 
to vary with both local composition and temperature.  The 
dimensionless coordinate ^ and the thermal enthalpy are, 
respectively. 

(22) 

(23) 

•r° 
where T is the standard reference temperature and Q* denotes the 
heat of primery nitramine decomposition in the gas phase (J/kg). 
Note that m(^) = const.  The boundary data specified are: 

C/.(_^)^V3^ >T(5»)=Tp5 dlVj/c^^C«')=dK/atCa?)=0. (24b) 

since, as mentioned earlier, the gaseous flame field involves 
diverse length scales, the following transform was used, for practical 
purposes: 

1^ = i^C^-^c) (25) 
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with c>0 being an adjustable constant, which allows controlled 
streching of the near-field coordinate, while compressing the far- 
field length scale.  It also affords sufficient spatial resolution 
in the far-field (e.g., for specified ^   = 1000 and c = 0.3, 
n    = 6.91 and YO .  = -1.2).        ""^^ ( max Lmm 

Using the foregoing transform, the gas phase conservation 
equations can be expressed as 

(26) 

where {^("0) represents dimensionless gas phase variables (species 
mass fractions thermal enthalpy) and R denotes the sum of relevant 
chemical reaction terms, as in Eqs. (20) , (21).  For T) < 0   (the 
near-field), the formulation gives approximately 

dspfdq-d^/d^^ = eZc4>) (27) 

where 0<fi<. 1   (but where reaction terms are relatively large), 
while for r\ ;> 0  (the far-field), the diffusion term is relatively 
suppressed, and a convective-reactive flow prevails: 

d$/dr^ ^ e^'^(^^ (28) 

Note that for large values of T]^, the chemical reaction rates are 
expected to be vanishingly small, compatible with the boundedness 
constraint imposed in Eq. (24.b).  Independent solution manifolds 
can now be generated for the gas phase conservation equations 
(transformed) r253,for specified data (m,p) and 4? ( T] . ) = <P° . 
The latter data, of course, are not known a priori. Therefore, the 
relevant interface conservation conditions at the melt/gas interface 
must be satisfied to render the overall solution (carried out 
separately for the melt layer and the gas phase) physically 
meaningful.  For chemical species and thermal enthalpy, following 
Scala and Sutton[363, 

4'(p^)-dcp/d^{0+)==cipt0-) (29) 

where, for chemical species 

<^C0-) =^ S^CO-), ^'=l,Z-M        (30) 

and for thermal enthalpy. 
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where the right-hand sides and the left-hand sides of Egs. (29) are fully 
determined by the melt layer and the gas phase solutions, respectively. Those 
solution manifolds v*iich satisfy the interface conservation conditions, Bqs.(29)-(3l),| 
are physically genuine solutions pertaining to the particular (m, p, T- ) data set 
iirposed. 
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1,5  THE NONEQUILIBRIUM NITRAMINE EVAPORATION LAW 

To facilitate independent calculation of the burning rate, m, 
with the present model, an additional physical constraint is 
required. This physical condition is provided by the nonequilibrium 
evaporation law at the melt/gas interface. 

The process of evaporation, at any instant, involves molecules 
of the substance (R) leaving the liquid in an outward flux, m (out), 
and an influx of molecules effectively returning to the surface, 
m^(in). When the net effect is m^(out) = m^(in), the vaporization 
is termed at  equilibrium.  However, when mp(out) = m^(in), net 
evaporation takes place, as it is assumed to occur at the surface 
of deflagrating nitramines.  In this instance, the net vaporizing 
material flux can be expressed [37] as, 

yrif, - u^^^ u^, [v^^(o+) -y^co^)]        (32) 
where 0 <o{.<  1 denotes the Knudsen accomodation coefficient, ^s 
is the gas density at the surface; the mean molecular velocity 
perpendicular to the surface is 

V^, = (^^TjzjW^y^^ (33) 

eq 
and Y "^ and Y denote the equilibrium- and actual-mass fractions 
of 'R* on the gas side of the surface, respectively. The outward 
flux, m^(out) is always given by the equilibrium expression, 

W is the mean molecular weight of gas at the surface, and p is the 
partial pressure of 'R', where use have been made of Dalton's law. 
Using a Clansius-Clapeyron expression, 

with P and T being the measured low temperature reference values. 
V     v    ' 

The net vaporizing flux, therefore, is the difference between 
two large numbers, since U  ;::3£> U . Thus, Y   and Y (actual) must 

ms    gs        R      R 
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be comparable to obtain the moderate values of m observed; indeed, 
Y   (0 1 is expected to yield a good estimate of the actual value 
or Y  (0 J, but their difference becomes important whenever m is to 
be calculated. 

Note that the total mass flux in the present system is 

accounting for subsurface decomposition in the melt layer; hence. 

n<n = vn^/v^Co') (36) 

which serves, along with the foregoing formulation leading to m^ 
as the auxiliary condition sought for independent mass flux 
calculations. 
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1_7 Discussion of Preliminary Results 

At the time of this writing, only independent melt phase results are 
available, presented in Tables 2 and 3-  Comparison can be made between 
solutions which include bubbles (Table 2) and those which exclude bubbles 
(Table 3j where gaseous decomposition products are assumed dissolved in 
the liquid) at three distinct pressures.  This comparison clearly shows 

• that for those cases which include bubble formation:  (l) The extent of 
subsurface decomposition is appreciably smaller.  (2)  The heat feedback 
at the surface is appreciably larger - within the same range of surface 
temperatures.  Overall melt thickness obtained in both bases was comparable 
for the same p and Tg-range.  A parametric study was run at different values 
of TQ as well; the results are withheld due to uncertainties in the corre- 
sponding values of the burning rates, which have to be imposed (using 
experimental data). 

Several numerical methods were attempted for the generation of 
independent gas phase solution manifolds.  The quasi-nonsteady approach 
which was previously used with success [23-25] (in which a parabolic partial 
differential system is solved by marching in psuedo-time toward steady state) 
was found too cumbersome in terms of core requirements and CPU time and 
tended at times to diverge with the diverse kinetics data employed.  Direct 
initial-value methods (marching forth in space from the liquid/gas surface), 
which are much less costly, are intrinsically divergent, owing to the presence 
of one set of eigeusolutions which diverge as large distance from the sur- 
face is attained; this occurs for the logarithmic-transformed system, Eq. 
(26), as well. 

At present, a transform to the ^   -T plane has been performed to 
use in a direct (low-cost) initial-value solution for the gas phase system 
in an iterative mode.  This approach is fully formulated, and is expected to 
overcome the previous numerical difficulties associated with the diverse 
chemical kinetics scales imposed. 
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TABLE 2.a RDX MELT WITH GAS BUBBLES 

To = 300 K, p = 2 MPA m = 8.76 kg/m^-s 
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TABLE   2.b   RDX  MELT  WITH   GAS   BUBBLES 

[•o  =   300   K,   p  =   6  MPa,   m =   19.7  kg/in2-£ 
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C. ICCCE+Cl 
C. ICCCE+Cl 
C.9999E+CC 
C. 9999E-t- CC 
C. 9997E-f CC 
C. 9994E'+CC 
C.99S7E4CC 
C.9976E4CC 
C.9953E4CC 
C.991£E+CC 
C.9838E+CC 
C.971CE-+CC 
C.94 98E+CC 
C.913£E4CC 
C.856CE4 CC 
C. 7696E+CC 
C.64S1E+CC 
C. 4 94SE-fCC 
C. 338CE4CC 

33CE4C4 
88CE4C4 
S£CE4C4 
8£CE-fC4 
S£CE-tC4 
88CE4C4 
88CE+C4 
88CE+C4 
88CE4C4 
88CE-+C4 
88CE+C4 
S19E+C4 
819E4C4 
817E+C4 
S15E4C4 
81CE-fC4 
801E4C4 
786E+ C4 
759E4 C4 
718E-+C4 
636E+ C4 
514E-+C4 
331E-fC4 
C7£b-f C4 

74 67E-tC3 
4CC4E+C3 
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TABLE 2.C RDX MELT WITH GAS BUBBLES 

TQ = 300 K, p = 10 MPa, m = 30.2 kg/m^-s 

+ -tCCr-ir:EMSEI: PHftSE PRDFILES+4 
TEMP (K>      EKLSS.TEMP  YMTR     YjMICRCriS   KET^EV? J^-M£-S   RHCE-KC^-MS 

£i::E4 
£i::E + 
£CE4 
£C;E + 
£i;;E+ 
di:■E■^ 
£uE-f 
ECE-+ 
£i:;E4 
£i::E + 
£i::E-f 
19E + 
1VE + 
18E+ 
16E-f 
l£E-t 
CtE^ 
9.^E-t 
7-^E-+ 
mE+ 
8fc.E-+ 
I::I:E4 

t8E-+ 
?7E-f 
£1E4 

C-^ 
C-^ 
C-^ 
i::4 
04 
04 
04 
C4 
C4 
i::4 
04 
C4 
C^^ 
i::4 
04 
i:;4 

04 
C'l 
i::4 
C^ 
i::4 
i::4 
i::4 
i::4 

1 C,4?£5E-n::3 C. C 
£ C. 4 894 E+ i::3 C. 4 C C CE- C1 
3 L: . 5 C C £ E -^ C 3 C. 8 C C 0 E - C1 
4 C.=111E+C3 C.l£i::CE+CC 
5 C. 5£ 19E+ 03 G. 16 C'CE+ C0 
e C.53£SE-K:3 C.2CC0E+CC 
? i::.54 37E-n:;3 C.£4i::CE-»CC 
8 C:. 5 5 4 5 E 4 C 3 0. £S 0 0 EA C C 

9 C.5654E-n;;3 C.3£L:0E-^Cu 
I C C. 5 7 6 £ E •+ C 3 C. 3 6 0 C E + 0 C 
II C. 5871 E■^ C3 C. 4 C C CE-* C 0 
1 £ C. 593i:;E-+1:3 C,440CE-+ 00 
13 0.10 8 8 E ■* C 3 0. 4 8 0 C E + 0 0 
14 0. e 19 7 E -f 0 3 0. 5 £ C 0 E + 0 0 
15 0. 6 3 0 5 E + 0 3 0. 5 €■ 0 C E + 0 0 
16 0. 64 14E-t C3 0. 6C0 0E+ 00 
17 0. 65£3E-f 03 0. 64 0 OE-f 0 0 
IS 0. 6631E-+ 03 0. 680CE+ 00 
19 0. 674 0E+ 03 0. 7£ 0 0E+ 0 0 
£0 C.684 3E+03 0.76COE+00 
£ 1 C. 6957E+ 03 C. 8 C 0 CE-f 0 C 
££ 0.7C66E-^ 03 0. 84 0 0E+ 0 0 
£3 0.7174E+ 03 0. 880CE-t 00 
£4 C.7£83E-t03 0.9£CCE-tOO 
£5 0. 7391 E-t 03 0. 96 0 CE-t 0 0 
£6 0.75C0E'+03 C.10 00E-+01 

,lOOOE+Ol 
. ICOCE-fOl 
.lOOOE+01 
.ICOOE+Cl 
. IGCiJE-fCl 
. ICCCE-fOl 
. 1C0CE->C1 
. 1CC0E4 01 
. 1CC0E4C1 
. lCCOE+01 
. 10 0CE-+C1 
. 1C0CE-+01 
. 1 OOCE-tOl 
. lOOOE+Ol 
.ICOCE+Cl 
.9999E+0C 
.9998E4CC 
.9997E4C0 
.9995E+CC 
.9991E-fC0 
.9984E4CC 
.9973E+0C 
.9954E-+0C 
, 99££E-+00 
.9863E+0C 
.9758E+00 

0. 0 
0.£078E-tO 
0.4 076E-fO 
C.5999E-»C 
i;;.785£E-fC 
0.964£E-tO 
0. 1137E-fC 
0. 13C4E+0 
0. 1466E-*0 
C. 16£4E4C 
0.1776E+C 
0. 19£4E-fO 
C.£068E+C 
0.££08E-tO 
0.834 5E4 0 
0.£47SE-+C 
C.£6GSE+0 
0.£735E-+.0 
0.£86 0E-+0 
0.£983E-fO 
0.31C5E4C 
0.3££8E-+0 
0.3353E-fO 
0.34 85E4 0 
C.36£8E+i; 
0.3796E-H: 

. 1500E-+08 
, 156£E-fC8 
. 16£3E-^08 
.16S5E+C8 
.1747E4C8 
. 18C9E-fOS 
. 1S71E-+C8 
. 193£E-^C8 
. 1994 E4 OS 
. £056E-fOS 
.8117E+C8 
. £179E-fC8 
. ££4 0E+ 08 
. £3 01E-f08 
.8361E+08 
.£419E-+08 
. £475E-+ 08 
.£5£6E+ OS 
. £568E-^C8 
. £597E-^08 
. 86C3E+08 
. £574E-f08 
. £4 9£E-+08 
.8335E+ 08 
. 8CS0E4CS 
. 1717E-f08 

18 
17 
17 
17 
16 
16 
14 
1£ 
10 

J HTDTj.J.-ri£-S ETFIIJ.-CZ U6jr'i.-s PSI=Vb.-V KE--K <.LIQ> 

i 0.£7S5E+CS 0.9716E-tOO      0 .i4SdE-n:iC 0.0 i!:. iiliutE^+ol 
ii. 0.£847E-+C8 0.1018E4 01      0 .35£SE-fC0 CO C. lGOGE+01 
;"| 0.8909E+C8 0.1C5£E-»01      C .36 06E+0 0 0. 0 C. ICCGE+Cl 
4 0.£970E+0S C.1C9£E+C1      i: .3685E+CC 0. 0 C. IGCCE+Cl 
cr 0.3C3SE+08 C.113£E+01      i: .3763E+C0 0. 0 0. IGOOE+Ol 
t- 0. 3094 E4 08 0.117£E-f01      L .3841E400 0. 0 0. lCCOE+01 
('' 0,3156E-f 08 0.1£l£E-fCl      C .39£OE-fOC 0. 0 0. ICOGE-tOl 
|Zj 0.3817E+08 C.1£5£E+01      i: . 399SE-t-C0 0. 0 C. lOOOE+Ol 

0.3879E+08 0.1£9£E4G1      i; .4 076E-^CC c. c C. IGCGE-fOl 
10 0. 3341E■^08 0.1331E+C1      C .4154E+0C 0.£348E-04 0.lGGOE+01 

11 C.34 0£E-^08 0.1371E-f01      C .4£33E4CC 0.789 0E-04 0.9999E4C0 
1£ 0.3464E-^08 C.1411E-+01      C .^311E4 00 0. 148 IE-03 0.9999E+0i: 
13 0.35£5E+08 0.1451E-+01      C .43S9E4 0C C.3 087E-03 0. 9997E-t GC 
14 0.3586E+08 C.149 0E+C1      C .446SE+C0 0.6159E-03 C.9995E+0C 
15 C.3646E■^ 08 C.15£9E4C1      C .4546E+CC 0. l££6E-0£ C.9990E4Gi: 

16 0.37 04E+08 0. 1567E-+ 01      C .46£4E+C0 0.£386E-0£ 0. 9980E+0i: 

17 0.376 0E-tC8 0.16C3E-+C1      C .47C3E4C0 G.44 67E-C£ 0.9968E+GC 

18 C.3811E+08 C.1636E+C1      C .4781E+CC 0.8£3CE-0£ G.9931E-^Gl: 

19 C.3853E-+C8 0.1663E+C1      C .4S59E+CC G. 14SCE-01 G.9876E+0i: 

£0 0.3881E4C8 0.1688E401      C ,4937E4C0 0.8606E-01 C.97SlE-^Cl: 

£1 C.3886E-fOS 0.16S6E+C1      C .5016E4C0 0.4501E-01 0.96££E-fOi: 

££ C.3856E+C& C.1667E+01      C .5094E4CC G.7597E-01 0.9361E4Ci: 
£3 0.377£E-»C8 0.1614E+01      i: .517£E-+CC 0. l£51E4Ci: O.S94 9E4 0i: 
£4 0.361CE+08 0.1518E+01      C ■.5£51E+C0 C.£OCOE-+CC 0. ssrJE+oc 
£5 0.3347E+C8 0.134 7E4 01      C :.53£9E+0C G.3C88E4CC C.74 09E4 0C 
£6 0.8970E+C8 0.111£E■^01      i; :.54 07E4C0 0.4531E+GC C.6191E+0C 
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TABLE   3.a   RDX MELT W/OUT BUBBLES 

To  =   300  K,   p  =   2  Mpa,   M  =   8,76  kg/in2-s 

4-H :cr:rEr;.:Ei PHF3E   PPCFILE3-^ + 
J TEt'lP •■-::. I'MLSS. TEMP YMTP fsICPCMS   K I:T.-rV. ..'■•■ M£-3 
1 T ^rx^E.-'t:::: CO 0.1 oci;E-t 1.1     i.. I. 0.4::.-lE4 0? 

c c 4:::74E-t 03 0.4 0 00E-01 0. 10OOE-t 01.      .. •:9'-'tE-^ 0 0 Ij. d^c-7E4 07 
1. c 4 ■.-■-::£■* C? 0.8L:CCE-01 O.lOOOE-t'Jj      i 1 1 ^ CE-t (1 C . Ar'i^E-^ i'7 

•H c ^C^iE-fij;:; 0. l£OOE-^00 0. 1 OOOE-i- 01      1- 1 71 3E-t 01 0. 4 791E-+ 07 
L.: C: Sl^ilE-nji 0. It00E+ 0 0 0. 1 OCOE-t 0 i       1 £3s9E-t 01 0. H5 38E-t 07 
r. i; tc : CE4 CO 0. iOOOE-f 0 0 0. 1 COOE-^ 01 c 77 Ct- Ci C. ="031 E-t 0 7 
1 z:ivE+Cc 0.E4 0 0E+ 0 0 0. 1 0O0E-+ 01       ■.: :c7'fE-f 01 0, Zl'zcE^^ 07 
p c f.i iJ8E-» i;3 C. c:8C0E+ 0 0 0. 10 0 0E4 0 1 J?!: 7E-f C 1 0. '?373E-t- 07 
'-: (' t ■^ ■-' 7 E -*• C 3 C.3£CCE+ CO 0. 9999E-' 0 0 •^ 3 4 ir E -f 0 i 0.53£5E-t07 

IC c 5536E+ C3 C. 3€ 0 0E+ CO 0. 9999E-' 1.' '•:      ■'. ■^"lEE-^Cl 0. 5t.73E-f07 

i    i ,: ":■ IT 7 if. E + 1; 3: 0. 4C00E-+ 0 0 0.999cE4;jO      ,, ^:fePE-Oi 0.5318E-f07 
i. c 77 3^E-nj3 0. 4 4C0E4 0 0 C. 999t-Et C: Z- - '-■ r In -*■ I * C . 59'!: 3E-I- 07 
X   1 : I'l'^E^ iJ3 0. H3: OOE-t- 0 0 0.999EE-fC:.       v r. ■.' H 1 E -f C 1 ij. if. 1 OcE-t- 07 
14 Ij tr'^ 3E-^ C3 0, fc'COE+0 0 0. 998t-E'+ 0 0      Ij ':4t3E-t 01 0. 6c4 8E-t 07 
15 ij tiJ3£E-nJ3 0.5tCCE-> 00 0.9974E+0 0      0 t.S7t.E-i- 01 0. t385E-tC7 
it 1.. ticiE+iJ3 0.c.COOE-^ 00 0.9933E-rOC      0 T 381E-» 01 0. t514E-t07 
1? Ij EE 1 ljE■^ iJ3 C.64 0 0E-fOC C.9917E-fOO      0 7fc77E-t01 0. t.t.30E-t07 
le Ij tc33E-+iJ3 0. t.8 0 0E■^ 0 0 0.9837E-+0 0      0 ,80P8E-+01 0.fc7ct.E-t07 
ly Ij t.:::i:eE-fC3 0.78 0 0E+ 00 0.9755E-fOO      0 84 54E-t01 0. 67;3t.E-t 07 
c;C Ij t47,-E4 03 0. 76 0 0E-f 0 0 0.9587E4i:0      ..: c33eE-fCl 0. >f.79 0E-i- o: 
£1 ij t5t.6E-* C3 0.80 0CE+CC C.9318E+0 0      0 9E84E-I-C1 0. t704E-+ 07 
c'li C fc.t55E-*C3 C.84 0 0E■^00 O.S8t9E-tOO      0 9619E-t01 C.t.4 7.3E-t07 
£::-; c EF^'IE-HJS C.S8C0E->CC C.Slfc£E+00      0 1 0 03E-tO£ 0.60£lE-t07 

i'^ f: , t333E+C3 . G.9&C0E+C-C. C 7 04 IE-too      0 1.050E-tO£ 0.££lt.E-t07 
£5 C t?'££E.+X'5'. -•e-^feG^fci^;. ;,,c;,^^£:t^E■^,C:fc.. C :iro7E-nj£. Ij, 38588-^07 
£t. c 7C11E4C3:; c.icci;e+er ■■i::.£37£E4CC^  ' C i£06E-+C£ C.1545E4C7 

j HT[ ]T,.j.--r';£-s r;TRij.--r:z 
1 ""T t:C7t:e-nj? i::.ll:3?.E-fiM 
c Ij 3££5E■^ 07 C. l££5E-tCl 
c' Ij 837£E->C7 0. l£t".3E-fCl 
•^ Ij ;35r?E4 07 C. 13C5E4C1 
cr Ij , 3t.6eE+07 0. 134 5E-»C1 
t Ij 331£E-t07 0. 1385E4C1 
r Ij &333E4 07 0. 14£5E+C:l 
;E' Ij 310tE-+07 0. 14t.5E-+Cl 
'? Ij 3c:5£E-+ 07 0. 15 05E-t01 

1 ij Ij 3393E-+07 0. lir^SE+Ol 
11 Ij 35J4E-f07 0. 13S4E+01 
Ic' Ij 'r>.39E-t 07 0. 16£'4E+01 
IS Ij 9831E+07 0. lfc.€.3E4Cl 
lA 0 997 0E-f 07 0. 1701E-+01 
15 Ij lOlOE+08 0. 1739E4 01 
16 Ij 1 0££E-f C9 0. 1774E-+01 
1? C; 1033E+08 0. 18 0fc.E4 01 
18 Ij 1 04 OE-t 08 0. 1838E4C1 
19 Ij 104£E-fC8 C. 1848E4ei 
£C Ij lC36E-tOS 0. 184 9E-f 01 
£1 Ij 1018E-+08 0. 18£eE-^01 
££ Ij 9781E4C7 0. 1763E4C1 
C -Z- Ij 9 0e.3E-+ 07 0. 164CE-tCl 
£•4 Ij 78-4 1E+C7 0. 14£1E+C1 
£5 Ij 58££E+ 07 0. 1C51E-+C1 
£6 Ij 84 89E4 07 0.4£08E-»CC 
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TABLE 3.b RDX MELT W/OUT BUBBLES 

TQ = 300 K, p = 6 Mpa, m = 1.97 kg/m^-s 

4-f 1 jcr-iDENSEr PHRSE   PPCFILE£4-f 
J TEKP<K:;:. rMLSS.TEKP 'rriTP      V MICRO MS:   kTT.-EV - J.--N£ -;: 

1 0.4?E:5E-n:::]: 0. 0                         0 lOCCE-fOl      0 0                         0 . 979£E-+ 0 1' 

c c. 4£'?1E-+Ij::: 0 4 00CE-01      0 lOOOE-fOl       0 31£lE-n: 0      0 .1019E40 Z- 

■-: c 4'?98E+ iJ3 0 8000E-01       0 lOOOE-fOl      0 61£3E+ C 0       Ij . 1058E4 0 Z' 

4 f: 511J4E-HJ3 0 l£OOE-i-CO      0 lOOOE-fijl      IJ 9015E-H: Ij       0 .1098E+ 0 :' 
c- c .5£11E-HJ3 0 ItOCE-^OC      C 10C0E-+C1      0 il80E-^L 1       0 . ii:-7E-+e ':: 

C- C .5::-:17E-+iJ3 Ij £OCOE-^00      C lOOCE-fOl      C 14 5CE-I L 1     Ij . 1 177E-+ 0 t 

r c 54£4E-nj:? 0 £4 0 0E-^0 0      0 lOOCE^Ol       C 1710E+ L 1      ij . 1E16E-I- 0 z. 

c ij 553 CE+ IJ3 0 £SOOE->00      0 lCCCE-^01       C 1963E-H: 1       0 .i£56E+0 z 
9 c wt3t".E-t- iJ3 0 3£0 0E-*0 0      0 lOOOE+01      0 ££07E4 L 1       0 . l£95E-fO 9 

1 C c. fr4 3E-fC3 Ij 36 0 0E-* 0 0      0 99'99E+ L'O      1.: £-^4 4E-f L 1       0 . 1335E-fO z' 

li C: ':84 9E-fC3 Ij 4 0C0E+00      C 999'9E4 CO      u £67HE-^ L 1          i": . 1374E-t 0 l 

1 il. c tr5fc.E-HJ3 Ij 44 00E+00      0 9 S ':■ 7 E -I-1 j C      U E899E+ C 1       0 .14 13E4 0 l 

j. ■»• C t.iJt.£E-> C3 0 4£00E-^00      C 9994E4CO      0 3ii6E+L 1         I.: . 14 5EE-+ 0 Z- 

i ^ f: tlr:9E-fC3 Ij 5£0CE+0 0      0 9987E-tOU      0 33c8EtI i         ij . 14 90E-I- 0 -■ 

i. Z- c t£7£E+C:3 0 . 56 0CE■^00      0 . 9976E+0 0      0 . 3534 E-+ L 1         0 . 15E8E4 0 I- 

It f; C.3S1E-+IJ3 0 6 0 00E+00      0 9954E+ 0 0      0 . 3736E-^ C 1         Ij . 1563E4 0 I' 

0.   1 i; i: -li'&E-t 03 c 64 0 0E-*0 0      0 9913E-^C0      0 . 3933E-t C 1         Ij . 1595E-I 0 z 

it C t.594E-nJ3 Ij 68 0 0E-tOO      0 984£E-*00      0 4 1£7E4r 1         Ij . 16E1E+0 I 

I':-' C c 7 0 IE-+03 0 78 0 0E+C0      0 . 97i6E-fOO      0 . 431SE4r 1      0 . 1 63c.E-t 0 'i 
£■0 c t9C7E-fC3 0 . 76 0 0E-fOO      0 95 0 0E+0 0      0 . 45 09E-+ C 1     Ij . 1634E-+0 ? 

C I c -;.9i4E-nj3 Ij 80 00E+00      0 9133E-HJIJ      ij 4 7 Ij 1 E 4 r 1     Ij . i604E-f C 
cc c 7iJ£0E+iJ3 c S4 0 0E+0 0      0 8l5£lE+00      IJ . 4£99Etr 1       0 . 15E6E-+ 0 : 

C ■-■ c 71£6E-HJ3 0 .8S0 0E+00      0 . 7517E-^0 0      0 . 5114E-H: 1       0 . 1374E4 0 r: 

2-^ c 7£33E+C3 0 , 9£0 0E4C0      0 5895E4 0 0      0 5364 E4i: 1    Ij .1103E4 0 5 
c 7339E-fC3 0 . 96 0 0E+00      0 334£E+0 0      0 5719E4I: 1     Ij .654 8E4 0 7 

i£'t- c 744tE-fC3 
'-■ 

.lOOOE+Ol      0 4£9CE-01      0 . 74 0EE+01       0 .1375E+0 

HTCT..J.--M£-S r:TFllJ--DZ 
1 C.lt:l8E4C8 0.9*l^E-nji:: 
c C 1358E+C8 0. 1031E+C1 
-~I 0 1897E-HJ8 0. 1071E+C1 
4 u . 1937E4IJ8 0. llllE+Cl 
cr c 197t".E-nJ8 0. 1151E4 01 
^2- c £ijl6E+iJS 0. 1191E+01 
i c . £iJ=:5E-fC& 0. 1831E+01 
f c £C95E-nj8 0.1£71E+01 
: c . £i34E-nj& 0. 1311E-f01 

i 1. 0 . £174E-HJ8 0. 1351E-f01 ^ 

11 ij £il3E-nJ8 0. 1391E+01 
i c c ££5£E-+ 08 0. 1431E+01 
X -^^ c . c£91E-+08 0. 14 7 0E■^01 
l'^ c ■ £3£8E-f08 0. 1S09E+01 ^ 

15 0 £3t.5E-f 08 0. 1547E-f 01 
16 c .£398E+08 C. 158£E-t01 
1 i' c . £4£7E-fC8 0. ItlSE-fOl 
IS Ij . £4 4fc.E-+C8 0. 1641E+C1 
19 ij. .84 51E4 08 0. 16S;6E-fCl 
~' (_! c .84 31E+08 0. lt55E4Cl 
£1 Ij .837 0E+08 0. 16£4E+C1 
C C Ij . ££4 lE-f08 0. 154 5E4C1 
C -J- 0 . £004E-f08 0.1391£-fCl 
£4 Ij . 1398E-fCS 0. 1117E+C1 

Ij .9358E4 07 C.tfc.£9E+CC 
£6 Ij . 1735:E-^C7 0 .1398E4 00 
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TABLE   3.C   RDX MELT W/OUT  BUBBLES 

=   300  K,   p =  10 MPa,   in =  30.2  kg/in2-s 

4-+c:DMr;Er-lSEr; 
.  TEKP-CK) 

PHf;SE PRCFILE: 
UMLSS.TEMP 

+ 4 
■r;TR •-rilCRCMS ~ Kri.- 

c. 
c. 
c. 
Ij. 

c. 
c. 

': 1  0. 
i 1  c. 
': 1  C. 
': 1  C. 
i 1 '.■. 

':■ 1  L: . 
'J1  L: . 
; 1  C. 
I-1  C. 
;: 1  c. 
j 1  c. 
:: 1  c. 
:: 1  c. 
1:1  C. 
Jl  C. 
:: 1  c. 
Cl  c. 
■: 1  C:. 
::i c. 

r-( J.--M2-; 

1 --i 

It. 

d4      C 

It 

2 0 
£1 

£4 

4 785E4L: 
4894 E-> C 
5CC£E-fC; 
f:illE-n:: 
5£19E-n:: 
;3c:eE4 0 
^4 8?E-+i;: 
554 3E-K;: 
5ir.54E-nJ 
=:?t£E-n:: 
5:r71E-n:; 
irfc'UE-^C 
6 CSSE-t-.C 
tlS7E-n:: 
txCcE^ C: 
t.4l4E-+ U 
t.r£:3E-^L; 
ttSlE+C 
t.74 CE+ C 
t.t4&E-+ C 
t?57E-+L: 
7Ct.tE+C:: 
7174E-fC:; 
7iE:S3E+ C3 
7391E4 0;: 
75i:;0E-n:::: 

,:   HTCT. J.---KS- 
873SE-+ L: 
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NARROW NEAP-FIELD REGION: 
HIGH GRADIENTS 

CONVECTIVE-DIFFUSIVE-REACTIVE 

WIDE FAR-FIELD REGION: 
LOW GRADIENTS 

CONVECTIVE-REACTIVE 

[" L LOGC'*^!) Y 

LU j    ^ ~^^,^^ FAR FIELD: SECONDARY 
y^ / \REACTIONS DOMINATE 

1 y\   ' LOG('-2). N.          / 

^—^ y\   1   NEAR FIELD: E.G.. \/ 
'     \ 1   NITRAMINE NO2 + CHjO /\v ^ >f DECOMPOSITION /             X. 

\i   DOMINANT 
\^ 

DISTANCE FROM PHOPELLai^T S'JRFACE 

Fig. 1.  Schematic of the nitramine 
gaseous flame field, showing the near- 
field and far-field concepts. 
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SOLID LIQUID 
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HEAT FEEDBACK 
FROM GAS 

, MVR(0-)Qy, 

VAPORIZATION 
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-Y^ 

Fig. 2.  Schematic of the condensed 
phase with decomposition.  Gaseous 
bubbles (decomposition products) 
become prominent as the nitramine 
mass fraction drops. 
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Appendix A 
Condensed-Phase Decoiriposition 

for a Deflagrating Solid Propellant 

Two distinct cases involving condensed-phase decomposition of 
deflagrating monopropellants are treated herein  in a highly 
approximate manner.  The objective is to obtain simple analytical 
expressions for the extent of decomposition (remaining mass fraction 
of reactant) and the thermal gradient at the surface.  In the first 
case, assumed to represent nitramines, the extent of subsurface 
reaction is expected to be small.  In the second case, assumed 
applicable to AP, the extent of subsurface decomposition expected 
is relatively large.  In both instances, the associated activation 
energies are assumed relatively high, and the process exothermic 
overall. 

1.  Nitramine-like Subsurface Decomposition 

A single, first-order-overall reaction is considered, which is 
consistent with the observations of Robertson [37 3 on condensed- 
phase decomposition of nitramines.  The physical model and coordinate 
system are depicted in Fig. A.l. 

A liquid phase near the surface is assumed, where all subsurface 
decomposition occurs.  Two characteristic features are assumed: 
(1) only a small extent of decomposition - up to 15% reactant 
depletion within the pressure range 1-10 MPa, and (2) The melting 
temperature, T , is sufficiently smaller than typical surface 
temperatures.  As a consequence of (2) and the high activation energy, 
E , most of the reaction would occur in a thin region within the 
liquid phase, under temperatures close to T . Note also that all 
products of decomposition are gaseous, and are assumed dissolved in 
the liquid. 

Let the dimensionless thermal enthalpy and the length coordinate 
be defined, 

"^ =C"r-TcV(T5-Tc)^ Z-?j/(>,/niCc)  (A.l) 

The associated conservation equations for the region of the 
liquid phase, z < z < 0: 

m ^ 

(A.2) 

(A. 3) 

K, s ^ Ac?, e "'Vm- -oU) '*•" 
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kCc =  J^C^^L/CCCTS-TC) (A.5) 

0  < e =Ts/(Se^< 1- (A.6) 

(A.9) 

(A.10) 

and Y(z) denotes the reactant mass fraction. 

The associated boundary data are: 

'^i^m)  =1 (A.8) 

where q^s Q;;;/C^(T^-T^). 

The last condition in Eq. (A.10) arises due to energy conservation 
at the liquid/solid interface, where Q*, the heat of melting, is 
depleted. ^ 

The system can now be conveniently transformed, using  as the 
independent variable, for  "C  *i'Zr<. 1: 

m 

C-C'ct^)ci4>/ci'c = KZe'^"'^^^Y      (A.ii) 

where <4?C'C)=T-'e:''  and Y = ¥{«:). The associated boundary 
conditions are 

4^ton)=-T,^,   V(rv„)=l      (A.13) 

As stated earlier, most of the chemical reaction is expected 
to occur in a thin, high-temperature region near the surface, where 
r: '~ 1.  Thus, the quantity 0 <.£ ^5?: 1 is suggested as a small 
perturbation parameter, and theTT-domain is conceived to have a narrow 
boundary-layer (or "inner") region, where chemical reaction is 
important; over the rest of the liquid phase (or "outer" region), 
the reaction is negligible. 
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Sufficient resolution for the inner region is obtained by use 
of the stretched coordinate, ,    , 

r^ - C'-'^Ve (A.14) 

Thus, transforming to the inner variables 4^* ^ ^^^  i\f the conservation 
equations are 

_ _FCr|) — 

The following inner expansions are suggested, in simple powers 
of £ : 

4='('^)/^4^/'J|)-^ B^C-rj^-i-e^^^O^)-*---       (A.17) 

The exponential term is likewise expanded : 

Substitution of these series expansions into the inner conservation 
equations  (A.15) and (A.16) results in an ordered hierarchy of 
differential systems after collecting terms in equal powers of £,: 

Zeroth order; 

(l-<fe)d^/o(rj = 0^   ^(0) = Co      (A.20a) 

(A.20b) 

with the solutions 

^o^ri)^(U>-Christ ^   ^Qri)=^0 (A.21) 
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Recall that according to assumption (1) herein, only a small 
extent of decomposition is expected.  Hence, the boundary condition 
for "g"  is homogeneous, leading to a trivial zeroth order solution 
(implying that Y "^ 1). 

First order; 

Note that now both boundary conditions are inhomogeneous.  For the 
reactant, log y(0) -^ 0 (g,) is expected; accordingly, a defect in the 
incoming heat flux from the gas (relative to the nonreacting, 
unperturbed case) must also be anticipated, owing to the slight extent 
of exothermicity in the condensed phase. 

The first order inner solutions are, 

,23a) 

(A.23b) 

(—^e 
Solutions of the outer region where   ~C -N/ "C are generally 

m 
of the form 

and likewise for Y ( "c )•  These are similar to the outer-field 
solutions suggested by Bush and Fendell C293; detailed calculations 
and rigorous matching will not be carried out herein.  However, 
important insights can be obtained by inspection. Evidently, the 
term 

for typical outer-field values of "C , cf. Eq. (A.7).  Thus, the 
zeroth order solutions are 

*<'t^)=-'^Hr '     ^^tr)-! (A.25) 
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determined from Eqs. (A.2), (A.3) and (A.13), using the outer 
expansions. The first order outer solutions would obtain exponential 
terms analogous to those in Eqs. (A. 23), but their boundary data are 
homogeneous.  Consequently, the square-bracketed constant terms 
in Eqs. (A.23)  for the inner region have no counterparts in the 
outer solutions. This occurs since the small perturbation (due to 
reaction near the surface) can not penetrate to the (outer) 
liquid/solid boundary. 

■j 

Therefore, the present approximation can be concluded by imposing 

while (^ -   ep   = ~%.>  ^^^  °f which arise due to inner-outer matching 
requirements. 

The important consequences of Eqs. (A.26), (A.27) are that the 
values of the mass fraction of remaining reactant G and the 
dimensionless thermal gradient  "C" (0) can h»e defined at the surface: 

6C-^,m;To)=©cp];-£^. ■] (A.28) 

Similarly, 

—X 2 
Now, since e = 1-x + 0(x ) for x « 1, the last equality may be 
rewritten in terms of G: 

The explicit expression obtained for G enables now calculations of 
the burning rate (using the eigenvalue equation), as well as n(p) 
and   ^ (p), where partial derivatives of ln(G) with respect to m, 
T , and T are required. 
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HMX 

(NITRAMINE) mSS FRACTION 
V. 

THIN. RAPID 
DECOriPOSITION 
REGION 

(AMMONIUM PERCHLORATE) MASS FRACTION 

SOLID 

• ■.'.'■'•?.''.■.'.'•■'■■■'J'.'.fi:'- 

THIN 
LIQUID 
LAYER, T.-Tg 

M    . 

'■y.i 

lIQlilDi        GAS 

0 
Fig. A. 1  Schematic diagrams of condensed-phase processes described herein 
for nitramine-like and AP-like monopropellants.  In both cases a thin re- 
action region near the surface prevails due to the high activation energies. 
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2.  Ammonium Perchlorate-like Subsurface Decomposition 

The formulation herein is quite similar to that of the foregoing 
section, and the same general assumptions are employed regarding 
urtiformity of thermophysical properties and the high activation energy. 

The following are exceptions: (1) The subsurface reaction is assumed 
of order zero with respect to its dependence upon the reactant concen- 
ration; this implies that the energy equation can be solved independently. 
(2) Melting and decomposition are intermingled, so that the "critical" 
temperature T (T )  denotes herein both melting and the onset of reaction. 

c  s 
Consequently  (due to the high activation energy), one may expect 

(3) An appreciable extent of subsurface decomposition is expected, in 
contrast to the previous analysis for a'nitramine-like substance. 

A similar analysis was carried out by Cohen [A.I]  and previously 
by Ramouhal and Cohen LA.2]. 

The energy equation  for     ~C^ < "^ <1 1       is 

where       ^^ _ C"^-TeVCT^ -To ) - 0( !:> 

The stretching transform of Eq. (A.14) can be applied again  to the 
entire region; after neglecting terms of 0(£), one obtains for 

0 < 'TIS C'-^y& <^c 
the energy and species equations: 

which obtain the solution 

(A. 35) 

1/2 
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Note that only the negative sign of the square root term has been 
retained [in the quadratic equation arising froin solution of Eq.(A.31)] 
since at the surface, <^(0) is expected to be maximal. 

The reference species (reactant) solution is similar 

V(r}l--C-4^(71)cc-r,-TO/62t (A.Ma) 

where C is a linear coupling constant, evaluated at the "cold" boundary: 

Now the values of the thermal gradient and the reactant mass 
fraction at the surface ri=0 can be evaluated: 

F =T'coV-1 - 4^(0)=[i+ "l^i^n^y^^'a, Ce '^'^^'-1)] 

CA.^S") 

= [c:2c-Q;t-G.CT5-To)-e-aCT,^OFj/Q* (A. ^6) 

where G is expected to depart appreciably from unity; for AP, (5 = 0,3 
is inferred.  Furthermore, if G=const over a broad enough range of 
T  {at fixed T ), then in this range 

and, by Eq. (A.36), this condition leads to: 

where T  is a reference surface temperature, and the differential operator 
is defined 

3t/cLTg  =:   'S/BTS -^ C^)r)/3rs") ^tdm 

All of these partial derivatives can be calculated from Eq. (A,35), 
since the (T , m)-dependences of each term are known explicitly, cf. Eqs. 
(A.4) - (A.7f and (A.10).  Note that although G (T , m)=const for fixed 
T , one may still obtain for variable T ^ 
o o 

"bCb = CdS/'^Tc^'^To     ^  0 
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The foregoing results have not been incorporated in the calculation 
of AP temperature sensitivity in the present study; i.e., G=const was 
assumed under all conditions.  The major reason is the uncertainty 
involving T , the "critical" temperature (which might well be T -dependent 
to provide for G=const); without a clear physical definition of T , 
calculations would tend to be highly speculative. 

It should be emphasized that G(T , m; T  ...)=const=0.3 is in no way 
inferred in this study; it is imposed, according to indications made in 
the analysis of Guirao and Williams [32j.  The detailed derivations of F 
and G in this section would be more useful for cases where G is variable, 
perhaps in simulation of the so-called foam zone in double base propellant 
deflagration. 
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Appendix B 
Sample Calculations and Datum Points - 

Comparison with BDP Monopropellant Model 

1.  BDP Calculations 

The following formulation was used: 

(B.l) 

ZB = /^cCV^) (B.2) 

ooat^)--As-^pC-^/'Q) (B.3) 

K;  = (A/q,)k:^ (B.4) 

t = (^V^KO 1/n, {B.5) 

For AP, the value of K was obtained by fitting a single 
experimental point (at p = 4.5 MPa, m = 11.01 kg/m -s), as follows: 
T = 884.7 k from Eq. (B.3)  and z  = 1.332 from Eqs. (B.l) and (B.2); 
tnus, from Eq. (B.5), 

KK^O =- 9.619-fC?""   (l<^/'rr)V5)V'F^' 
•6 

Now, according to Eq. (B.4), using ( ^/C ) = 5 x 10~ kg/m-s, one 
obtains ^ 

|C:^CAP:)= 1.924     g/cc-^-oti*^ 1.6 
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which is the kinetics constant for gas phase reaction, only slightly 
different from that of BDP, namely 1.12 g/cc-s-atm * . 

For HMX, a similar procedure (at p = 3 MPa, m = 11.33 kg/m -s) 
leads to T = 1133 K, Z_ = 3.288, and hence 
SB 

In this case, using again (X/C ) = 5 x 10  kg/m-s, one finds from 
Eq. (B.4) ^ 

2 
which is somewhat larger than the value of 0.246 g/cc-s-atm specified 
by BDP. 

2.  Present Model (MBR) Calculations 

For AP, from the eigenvalue equation. 

S =  K, ^^''^^ fVyn.^ (B.6) 

With the reference temperature taken T = 1000 K, and the reference-point 
data (p = 4.5 MPa, m = 11.01 kg/m -s), the value of K can be calculated 
from Eq. (B.6) with G = 0.3 and T = 1400 K (for T = 873 K): 

I s 

1.6 
K^C^P:>=^ i^ei-io^"^ Ck:j/wi^^)VRc' 

Now, from Eq. (B.7), using >/c^   = 5 x 10  kg/m-s and W = 30 g/mol. 

A;CAP) =  L757^io'^ CH/y^'-^:>/C^^/^^^^' e 
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which is within an order of magnitude of the original Longwell-Weiss 
prefactor when converted to the proper units. The foregoing value of 
K was used in the calculations of mjetc. 

For HMX the strategy is slightly different and aimed to obtain 
first a value for n^^, the overall gaseous reaction order in the near 
field. The burning rate pressure sensitivity is written 

^GP) =- 0.S- [ 1 +■ i/(J-\r^/^)~] , (B.8) 

readily obtained from the HMX burning rate correlation 31,38 

o.S" yri   = cf>[^-e B/f 3 

with B = 3.84 MPa. This yields at the reference point  (p = 3 MPa, 
m « 11.33 kg/m -s) n = 0.7193.  From the pyrolysis formula, T = 683.3K 
and from Egs. (28), G (T^, m; T^ = 300 K) = 0.9265 and lg(G) = -0.0764. 
The HMX pressure sensitivity formula is, explicitly: 

n, ̂ p>'^rc^-^°-^--)^-LB.„ 
using pertinent data from Table 2; thus 

This result is in remarkable agreement with the computed value of 
n-= 1.3 in Ref. 38, where the upward shift from unity is explained 
by thermal enhancement, due to the presence of secondary reactions. 
Now, since T, = constant in the present approximation, the eigenvalue 
equation obtains the constant factor, 

evaluated at the aforementioned reference point, with n = 1.4; this 
value of K is used in the m vs p calculations herein. By definition. 
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where values of particular terms In the square brackets are unimportant. 
However, to facilitate comparison with the kinetics data (first order 
overall) of Shaw and Walker ["39] , the mean temperature is taken at 
T = 1000 K, and a multiplicative factor of  P is included to adjust 
the overall order; the prefactor is 

with the foregoing values of. K , n, 
of magnitude from 2.5 x 10  1/s spec 

etc. This value is within an order 
magnitude from 2.5 x 10  1/s specified by Shaw and Walker, 

In summary, each of the models considered contains one overall 
kinetics parameter (or two, in the case of the present model for HMX), 
which was adjusted at a single experimental reference point (p, m). 
This adjustment is specific to the monopropellant simulated.  For the 
present model, the adjusted parameters were shown to obtain kinetics 
prefactors in fair agreement with available chemical kinetics data. 
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NOMENCLATURE 

h = pre-exponential factor, Arrhenius 
kinetics constant; 1/s for first order, 
m /mol-s for second order 

C fC^    = specific heats for gas (isobaric) and 
condensed phase, respectively, J/kg-K 

D       = diffusion coefficient, gas mixture, 
m /s 

B       = activation energy, Arrhenius kinetics 
constant, kcal/mol 

h       «= specific thermal enthalpy, J/kg 

k^/k^    = reaction rate constant  (Arrhenius form 
intended) for first order 1/sec, and 
for second order m  /mol-s 

M       = total number of overall reactions in 
nonlinear gas phase model 

2 m       " mass burning rate, kg/m -s 

N       = total number of chemical species in 
gas phase model 

n = burning rate pressure exponent in ap" 
formula 

P       = pressure, MPa (Mega Pascal; 
1 MPa = 10.013 atm) 

Q       = heat of reaction, J/mol (positive for 
exothermicity) 

r       = linear regression rate of burning 
propellant, m/s 

qg      = surface heat balance parameter 
(representing liquid side) 

Ry      " universal gas constant, 1.987 cal/mol-K. 
In equation of state, MKS units used. 

T       * temperature, K 
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f       « final flame conditions 

G, g    = gas phase property 

i       « primary decomposition (i = 1) and 
secondary reactions (i » 2,...M) 

j       = chemical species  (for j = 1,3...N-1) 
and thermal enthalpy for j » N 

L = liquid phase 

m = property corresponding to melting 

max "  maximal 

8 «= liquid-gas interface 

sub = sublimation 

V = vaporization property 

0       = ambient conditions, e.g., initial solid 
phase temp. T.. 

Superscripts 1 

{ ) = dimensionless property 

(")      « mean property 

*       = specific (per unit mass); in the melt 
layer analysis only: intrinsic phase 
property. 

( )"*■     = on the positive (or progressive 
coordinate) side of an interface 

eq       = equilibrium 
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u       « mean velocity of gas mixture, 
perpendicular to propellant surface, 
m/s 

W       = molecular weight, kg/mol 

*'l'*'2    ~ primary and secondary reaction rates, 
respectively, mol/m -s 

X       * QY/ *, reduced liquid phase density 
fraction in melt layer 

y       = mass fraction 

y       = length coordinate, m 

z       "  dimensionless melt layer coordinate, 
Eq. (12) 

^       = dimensionless near field coordinate 
in the gas, defined by Eq. (22) 

Y|       * log(^+ C) , dimensionless gas phase 
transform coordinate 

\ -  thermal conductivity, J/m-s-K 

f\ = flame speed eigenvalue, based on maximal 
primary reaction rate 

\W 
D^i -  (v.- v.)  = net stoichiometric coefficient of j-th 

species in the i-th reaction; single 
and double primes denote reactant and 
product, respectively 

r*       = mixture density, kg/m 

7-;       = (T-T )/{T^-T ) dimensionless melt layer ., m,  s m -^ 
enthalpy 

cip =  dependent variable in melt layer 
formulation, Eq. (16); also, in gas 
phase, Eq. (26) 

-^ 
V /V, porosity in the bubbly melt layer 

Subscripts 

B ,      = bubbly melt layer, overall properties 

c       = condensed-phase property 
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